Polyhedral geometry, supercranks, and combinatorial witnesses of congruences for partitions into three parts
نویسندگان
چکیده
منابع مشابه
Polyhedral geometry, supercranks, and combinatorial witnesses of congruences for partitions into three parts
In this paper, we use a branch of polyhedral geometry, Ehrhart theory, to expand our combinatorial understanding of congruences for partition functions. Ehrhart theory allows us to give a new decomposition of partitions, which in turn allows us to define statistics called supercranks that combinatorially witness every instance of divisibility of p(n, 3) by any prime m ≡ −1 (mod 6), where p(n, 3...
متن کاملNew Congruences for Partitions where the Odd Parts are Distinct
Let pod(n) denote the number of partitions of n wherein odd parts are distinct (and even parts are unrestricted). We find some new interesting congruences for pod(n) modulo 3, 5 and 9.
متن کاملPartitions into Distinct Parts and Elliptic Curves
A positive integer D is called a ‘congruent number’ if there exists a right triangle with rational sidelengths with area D. Over the centuries there have been many investigations attempting to classify the congruent numbers, but little was known until Tunnell [T] brilliantly applied a tour de force of methods and provided a conditional solution to this problem. It turns out that a square-free i...
متن کاملA note on partitions into distinct parts and odd parts
Bousquet-Mélou and Eriksson showed that the number of partitions of n into distinct parts whose alternating sum is k is equal to the number of partitions of n into k odd parts, which is a refinement of a well-known result by Euler. We give a different graphical interpretation of the bijection by Sylvester on partitions into distinct parts and partitions into odd parts, and show that the bijecti...
متن کاملThe Arithmetic of Partitions into Distinct Parts
so that Q(n) is odd if and only if n is a pentagonal number. This fact was generalized by Gordon and Ono [4], who demonstrated that for any positive integer k almost all values of Q(n) are divisible by 2k, and by Ono and Penniston [7], who found an exact formula for Q(n) modulo 8. Their techniques do not apply to odd primes, however, and for these primes the situation seems to be more difficult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2017
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2017.06.002